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Abstract

The U.S. Bureau of Reclamation has ingtituted a program for probabiligtic risk andyssin its dam safety
activities. By acknowledging and explicitly addressing the various uncertainties inherent in the evaluation
of dam safety, the objectiveisto improve the understanding of dam behavior and aidin directing dam safety
resources toward those areas where greatest risk reduction benefits can be achieved.

Reclamation’s risk analyss activities and its implementation of related technology have proceeded
incrementdly, expanding and refining the procedures according to perceived needs and outcomes from
progressive gpplications. [tsDam Safety Risk AnaysisMethodol ogy document describesthe current status
of these efforts. Among the elements it incorporates are structurd response probabilities that expressthe
conditiond likelihood of dam performance given the loadings imposed, and Reclamation’ s procedures for
obtaining them. This report has been prepared to address these and related topics in support of the
Methodology document.

Thereport treatsvariousmethodsand procedura techniquesfor estimating structural response probabilities
inthe context of current Reclamation practice. Many of these methods have aready been adopted, but their
technical underpinnings may not be universally appreciated or commonly understood by the technical
specidists who apply them and the dam safety decisonmakers who use them. One purpose of this work
is to enhance this understanding. Inasmuch as engineering judgment is a prerequisite for any dam safety
assessment, risk-based or not, its quantification as subjective, degree-of -belief probability receives specia
emphasis. This aspect of probability is seldom treeted in its engineering literature, residing instead in such
diverse fidds as cognitive and experimenta psychology, business management, decision theory, and
atificid inteligence. Corresponding emphasis is placed on these cognitive, behavioral and judgmental
aspects as they pertain to dam safety risk andysis, with key references to work in these fields.
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1.0 Probability Concepts

Given that a dam experiences some type and magnitude of loading, certain features and components it
contains may respond in various ways. Like the loads themselves, these responses are amost aways
uncertain to one degree or another because of unknown conditions or imperfect understanding of
mechanisms. Structural response probabilities are used to quantify this uncertainty. In the context of
Reclamation’ s risk assessment process, neither these probabilities nor the procedures used to estimate them
are seen as ends in themselves, but rather as aids to support improved dam safety decisions.

L oad probabilities ordinarily incorporate astrong statistical component in records of past earthquakes, floods,
or reservoir levels. Thisisoften not so for structura response probabilities which, like any assessment of dam
behavior, must incorporate judgment. This may seem to violate some fundamental precept of probability
almost as if it were used in two distinct senses, one correct and the other if not incorrect then at least
somewhat suspect. In fact, there are two interpretations of probability at work, both equaly legitimate, both
with rich heritage, and both used in response probability formulation in complementary ways.

1.1 Probability interpretations

Probahility is the quantified likelihood of an uncertain outcome of an “event,” which can be some process or
mechanism, the value of some parameter, or the existence of some unknown condition or state of nature.
Different probability interpretations arise from different kinds of events and information about them. The
mathematics of probability requires only conformancewith its basic axioms, for example that the probabilities
of any set of mutually exclusive and collectively exhaustive events must sum to unity. But neither the axioms
nor the mathematics that express them depend in any way on which interpretation is adopted. These
interpretations are, however, fundamental to how probability is used and how its values are obtained.

1.1.1 Relative frequency

The best-known interpretation of probability isther el ativefrequency approach which derivesfrom repeated
sampling of a statistically homogeneous population or repeated trias of a probabilistically stationary process.
Given a sufficient number of trias or observations, the frequency of occurrence will eventually convergeto
some stable and constant value. Relative frequency approaches for response probability estimation can
include liquefaction probability from repested field observations, or failure rates of electrical or mechanical
components from repeated occurrences based on maintenance records. Statistical characterization of input
data in reliability methods also adopts this approach for things like concrete strength or soil propertieswhere
sufficient and representative data exist.

The attractiveness of the relative frequency approach isthat aprobability so derived isscientificaly verifiable
from the standpoint of repeatability. Given the same sample population and the same tatistical procedures,
any two estimates will yield the same probability value. Useful as it may be under applicable circumstances,
the relative frequency interpretation cannot capture the full range of important uncertainties because it does
not alow a probability to be associated with a state of nature. It becomes meaningless to assign a probability
to the existence of a geologic defect such as a fault because repeated sampling cannot be performed: either
the fault will exist on every tria or it will not, and the frequency interpretation does not pertain to such single-
event occurrences. This approach can a so be limited because the uniqueness of damsusually failsto provide
the kind of homogeneous population that valid statistical sampling requires. Interna erosion frequency over
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agroup of dams, for example, is amost always affected by a host of dissmilar features and conditions.

1.1.2 Subjective, degree-of-belief

Under the subjective, degree-of-belief interpretation, probability is a measure of one's degree of belief or
confidencein the outcome of an event. Inthisapproach, al kindsof information and judgmentsareadmissible
in formulating a probability value whether based on repested trias or not, and it therefore becomes of
considerable value in assigning likelihoods to a state of nature, processes not readily sampled, and non-
repeatable single-event occurrences in general. To the extent that the degree-of-belief approach relies on
individua judgment, it is subjective in the same sense as the subjective judgment required for interpreting the
input and results of any deterministic analysis.

Centrd to the degree-of-bdlief interpretation is that uncertainty derives from one's state of knowledge, and
as knowledge, information, or the estimator varies so too will the assessed probability. Here, probability is
viewed not as some intrinsc property of the event that could be determined with scientific validity if only
sufficient data were available, but as a property of the information available, state of technology, and
judgment of the estimator. In a degree-of-belief framework, there is no singular or unique “correct”
probability, only one that accurately reflects the belief of the estimator using dl of the knowledge and
information at hand (inter nal validity) and that conformsto the probability axioms(coherence). Accordingly,
degree-of-belief interpretations have aso been termed personal, judgmental, subjective and Bayesian
probability approaches.

1.2 Probability in everyday use

Both relative frequency and subjective, degree-of-bdlief interpretations are familiar in the ordinary use of
probability for expressing uncertainty, including degree-of-belief approaches that incorporate frequency
information. Weather forecasting is a common example. One way to estimate the probability of rain would
be to compile the frequency of rain on the date of interest, and such readily-available climatology statistics
can yield surprisingly accurate predictions. However, forecasters aso have other information and personal
experiencethat includes such thingsasisobaric patterns, moisture movement, windsal oft, reportsfrom nearby
stations, and simple common sense - a glance out the window. All of these elements are judgmentally
integrated with climatology statistics (called a base-rate frequency) to derive the forecaster’s subjective
probability of rain. In fact, weather forecasters become remarkably well-calibrated (i.e., forecasted rain
probabilities of 0.6 correspond to rain about 60% of the time over the long run) due to the prompt and
unambiguous feedback they receive, making them popular subjectsfor research (Murphy and Winkler, 1974).

1.3 Historical development

The distinction between probability as a measure of stable frequency on one hand and as an expression of
belief or confidence on the other is at least as old as the mathematics of probability itself. In 1654 the eclectic
prodigy Blaise Pascal and the brilliant mathematician Pierre de Fermat devised the combinatorial mathematics
of probability in relation to a gambling problem posed by the Chevaier de Méé, a French baron. The
probability axioms as we know them today would wait to be formulated by Kolmogorov in 1933 using set
theory, but neither the mathematics nor the axioms ever spoke to what probability should be taken to mean.

Between about 1650 the mid-1700's, Classical probabilists and mathematicians such as Pascal, Leibniz, and
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Jacob Bernoulli used probability in two distinct but complementary senses, one being aleatory or literdly
dedling with frequencies in games of chance, and the other epistemic in relation to one' s state of knowledge.
In this age of the Enlightenment, the Classica probabilists were basically determinists at heart, believing that
all uncertainty was fundamentally produced by lack of knowledge that the “rational man” of the day would
eventualy overcomethrough theastoni shing breakthroughsin scientific understanding then emerging. Hacking
(1975) cdlsthisduality the“ Janusface’ of probability, and the Classical probabilists accepted both concepts,
moving easily back and forth between them (Gigerenzer, et. al., 1989). Philosophers John Locke, David
Hartley and David Hume rationalized this duality, going so far as to theorize that the brain contained a kind
of counting device which recorded and mapped event frequencies onto belief about their likelihood
(Gigerenzer, 1994).

During this same period John Graunt began to compile mortdity datain London, de Witt and Hudde used it
for pricing of annuities, and Adol phe Quetel et extended demographicsto socia and even moral behavior. Thus
begantherise of frequency-based statistics, which cameto eclipse both the co-existing duality of the Classical
probabilists and its degree-of-belief associations. Gigerenzer, et. a. (1989) attribute this emphasis on the
statistics of mass phenomena to the ascendance of the “average man” over the elite “rational man” that
accompanied the French revolution and the societal forces surrounding it.

So the situation remained with relative frequency and statistics dominating the experimental sciences until
subjective, degree-of-belief concepts re-emerged in the twentieth century through the work of de Finetti
(1937), Ramsey (1931) and Savage (1954). Today, degree-of-belief concepts have become the basis for
probability usein decision theory, artificia intelligence, and branches of economics and business management,
with relative frequency interpretations dominating in physics and other experimental sciences.

1.4 Risk analysisimplications

Both relative-frequency and degree-of-belief concepts have their place in dam safety risk anaysis, and
neither need be adopted to the exclusion of the other. They are in many ways complementary and are often
combined, with frequency approaches suited to repeatabl e processes where applicable dataare available, and
degree-of-belief approachesto single-event occurrenceswhere experience and engineering judgment prevail.

The varied nature of the uncertainties inherent in the evaluation of dam safety prevent it from becoming a
purely objective exercise. Engineering judgment, which is by definition subjective, cannot be eliminated, nor

would it ever be desirable to do so. Both statistically-characterized data and subjective judgment can be
incorporated using these two equally legitimate probability interpretations without violating any mathematical
precept of probability itsalf. Thisdual application emulates the Classical probabilists, and it providesthe basis
for understanding the various methods for structural -response probability estimation.

This has severd implications for dam safety probability estimators and decisionmakers adike. Even though a
failure probability may be expressed as a single number, there can be no singularly valid or uniquely correct
value. Such a “credible and defensible’ probability would be a sole construct of the relative frequency
interpretation with the scientific repeatability and deductive validation that stable frequency implies. By
contrast, when degree-of-belief approaches are incorporated, a failure probability becomes an inductive
statement of belief about the safety of the dam, including the confidence in al of the measures used in its
assessment (Fandlli, 1997). Asfor any conventiona dam safety evaluation, failure probability depends on the
judgment exercised, and it can be no better or worse than this judgment itself. Judgment varies with time,
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knowledge, information, and those who exerciseit, and sincejudgment is not necessarily reproduciblein these
respects neither is the probability that incorporates it. In this context, a more applicable god is the sensible
and responsible use of such a probability: sensible by applying it with an understanding of the factors that
affect it, and responsible by expressing it with due recognition of itsintrinsically non-unique character.

2.0 Response Probability Estimation Techniques

There are severa dternative techniques that can be used for estimating structural response probabilities.
Broadly grouped, these can be classed as normalized frequency and decomposition methods.

2.1 Normalized frequency

The normalized frequency technique assigns a probability to a particular failure mode by normalizing or
adjusting the value rel ativeto abase-rate annual frequency for that samefailure mode. Failure frequency data
compiled by Reclamation and others can be used for this purpose, typicaly in aformat that alows base-rate
frequencies to be determined for various failure modes subdivided according to dam type, height, and age,
provided that there are statistically significant numbers of failures and years of dam operation in the
subcategory of interest. The normalized frequency techniqueis not applicableto flood or earthquakeinitiators
because the database cannot reflect the flood or earthquake hazard specific to any particular damsite.

The first step isto identify some base-rate frequency category that best applies to the dam and failure mode
being considered. Next, al of the available information relevant to that failure mode for the particular dam
iscompiled and reviewed. Thiscan includeinformation from siteingpections, construction photographs, design
and construction records, and all relevant analyses that have been performed. Often thesefactorsareinitialy
synthesizedin away that alowsaninitia judgment on whether the assessed probability should be either higher
or lower than the base-rate frequency (i.e., whether the dam is "better" or "worse" than the "average' dam
reflectedin the database category). Additional assessments are then required to quantify the degreeto which
the particular dam departs from typical conditions, and therefore what the failure mode probability estimate
should be. In this respect, the normalized frequency method can be seen as adegree-of-belief probability that
incorporates statistical information on dam failure frequencies. Figure 1 provides an example format used by
Reclamation for normalized frequency estimates of static failure probability of concrete dams.

Inpractice, thisinvolves several complicating factors. First, the specific conditions or features associated with
the "typica" dam in the database are undefined, and even the concept of a typical dam may be hard to
envision since each one in the database is unique. Although this may be less important if the particular dam
has either serious deficiencies on one hand or a complete absence of symptoms on the other, it can still be
difficult to quantify the extent to which the assigned probability should depart from the base-rate frequency.
And findly, a normalized frequency cannot easily quantify the relative contribution of specific features or
conditions of the dam that influence the probability assigned, making it harder to prioritize factors that may
require further analysis or investigation. In this respect, Foster, et. a. (1998) provide estimated failure
frequenciesfor subpopulations of embankment dams according to various features and foundation conditions,
and a codified agorithm for judgmental normaization to enhance consistency.
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In principle, normdization can be improved by the application of Bayes Theorem, which providesa
formal meansfor updating probabilities as additional information is obtained or additiond factorsareinvoked.*
Here the base-rate failure frequency becomestheprior probability, the Bayesian estimator is someindicator
probability (such as sand bails, cloudy seepage, or inadequate filters for internal erosion), and the updated
failure probability incorporating thisinformation istheposterior probability. Bayes Theorem hasthe potential
to considerably enhance the normalized frequency method by isolating and eval uating the contributions of any
number of separate indicators. However, it requires that the reiability of the indicator be known in terms of
both its false-positive and accuracy rates. This, in turn, requires experiments or observations under uniform
conditions for indicator reliability to be determined on a relative-frequency basis. Thisinformation is seldom
available for the kinds of subtle, complex, and interrelated indicators important to dam safety assessment.
Alternatively, indicator probabilities can be estimated using degree-of-belief approaches, but this can involve
similar issues as informa normalized frequency methods.

2.2 Decomposition

The decomposition approach relies on disaggregating each failure sequence into the smallest tractable
component events that can redlistically be defined. It mimics conventiona engineering problem solving
methods which recognize that it is easier to address then combine smaller components of a problem than to
directly attack alarge, complex one. The decomposition approach to estimating response probabilitiesfollows
logically from the event-tree structure that defines the component events for each failure sequence, and it
can reduce error in the aggregated result provided that component probabilities can be estimated more
reliability than target value, which is usualy the case (Ravinder, et. a., 1988). The decomposition approach
is applicable generaly to any failure mode involving flood, earthquake, or static initiators that can be
understood at a sufficient level for component events to be defined. The choice among various methods for
estimating these individual component event probabilities depends on the type of event being considered; the
level and nature of information about it; the availability of techniquesto addressit; and the capability of team
members to implement the approach adopted. Severa of these methods are described below.

2.2.1 Statistical methods

Some component event probabilities can be characterized directly by Statistical data using the relative-
frequency interpretation previousy described. Examples could include reservoir level probability, and failure
frequency for certain electrical or mechanical components associated with gate operation. In directly applying
stati stical dataon past processesto their future operation, it isimportant to account for any changesthat might
have come about since the data were compiled (for instance modifications to reservoir operating rules), and
limitations imposed by the size of the statistical sample the data represent.

2.2.2 Degree of belief approaches

Many if not most component probabilities are estimated according to a degree-of-belief interpretation that
incorporates dl of the data, information, and analyses at hand. However, the cognitive processes used in
estimating these probabilities need to be recognized and accommodated. People have limited ability for

! Theformal application of Bayes' Theorem should not be confused with the "Bayesian” probability approach,
as degree-of -belief interpretations are sometimes called. Thisterminology results from the ideaembodied in Bayes
Theorem that probability varies according to the information available, but it does not necessarily imply formal
application of the theorem itself.
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cognitive discrimination at the extreme ends of the probability scale. For example, in the absence of any
underlying base-rate information few are able to articulate an underlying rationale for why a degree-of-belief
probability should be 10+* as opposed to, say, 10 or 10°. Moreover, such extreme probabilities are often the
result of overconfidence bias. As explained subsequently, this is a tendency for people to be much more
confident than they should about uncertain events, which can further limit the internd validity of extremely
high or extremely low degree-of-belief probability values.

2.2.3 Reliability techniques

For certain component events, input parametersto ordinary deterministic analysis procedures can be specified
probabilisticaly where applicable analytical models and sufficient data for statistical characterization are
avallable. These reliability methods apply a probabilistic overlay to input parameters in otherwise
conventional analysistechniques. Probability distributionsassigned to theinput parametersyield the probability
that the computed factor of safety is less than 1.0, and first-order second-moment (FOSM), point-estimate
methods, or Monte Carlo simulation are used to derive approximate solutions. In practice, judgment usualy
provides the basis for selecting the form of the parameter distributions, and results can be sensitive to this
factor when valueson thetail of the distribution areinvolved. These procedures are most useful for evaluating
parameter uncertainty related to material properties, and can account for the effects of systematic error and
data scatter, including spatial variability. Long, low dike structures can be especially amenable to such
treatment (Vanmarke, 1977). Degree-of-belief probabilities can be incorporated for judgmental weighting of
aternative models or properties, for example various time histories that might be used in dynamic response
analyses.

Implicit in the application of reliability techniquesis that a computed probability for FS<1 correspondsto the
probability of event occurrence. This neglects uncertainty associated with the modd itsalf, which goes beyond
numerical gpproximations and simplifications to conceptualization of the process and the variables used to
represent it. Factors related to model uncertainty can be among the most controversial and uncertain issues
in contemporary practice, and the history of dam engineering contains many examples of analytica models
later found to poorly represent the processesinvolved. Also, many well-accepted model shave been devel oped
for design purposes where it is sufficient that they conservatively predict conditionsrequired to avoid failure.
Their ability to accurately predict conditionswherefailurewill occur, afundamental requirement for response
probability estimation, can be more in doubt.

2.2.4 Regression techniques

Relationships based on observationa data are sometimes available for predicting the occurrence or non-
occurrence of aprocess according to somerelated parameter. Usually expressed as adeterministic boundary
between these binary states, afrequency-based occurrence probability can also be determined directly using
statistical binary or logistic regression techniques without the need for agorithms or numerical models of the
process. Examples include level-ground liquefaction (Liao, et. d., 1988; Youd and Noble, 1997) and filter
performance in laboratory tests (Honjo and Veneziano, 1989) asillustrated on Figure 2. These methods are
influenced by the size and interpretation of the available database, and they may require other adjustments
to reflect field conditions. Neverthel ess, logistic regression techniques are among the most powerful methods
for relating field or |aboratory observations to response probability. Available datafor other binary-outcome
processes such as spillway erosion could readily be evaluated probabiligticaly in this way.

2.3 Applicability



Of the two basic classes of techniques for response probability estimation, decomposition approaches are
more general. They provide the only method universally applicable to static, flood and earthquake conditions,
and they offer the ability to more specifically identify how particular events, conditions, and features
contribute to the response probability derived. However, decomposition techniques can be difficult under two
conditions. Thefirst iswherelack of field performance experience and inadequate knowledge of mechanisms
precludes conceptualizing the failure sequence, as can be the case for processeslike nonlinear, post-cracking
behavior of concrete dams. Secondly, it can be difficult to redlistically define or decompose failure sequences
for well-designed and constructed dams that present no evident symptoms of inadequate performance. For
datic failure modes, normalized frequency methods provide an dternative means for response probability
estimation, alowing decomposition and normalized-frequency techniques to be used together for estimating
bounding ranges on response probability, or to check one approach against the other for reasonableness.

3.0 Cognitive Processesin Subjective, Degree-of-Belief Probability Estimation

It isclear by now that the degree-of-belief interpretation plays a key role in both normalized frequency and
decomposition approaches, but beyond this it requires an understanding by the probability estimator and the
facilitator of some of the cognitive processes that people use in devel oping these estimates. Everyone must
confront uncertainty in everyday life, and in general people are remarkably successful in doing so.
Nevertheless, limitations on capacity for processing information make people ill-equipped in many ways for
dedling with and expressing uncertainty with the kind of mathematical consistency that the probability axioms
require (Hogarth, 1975). Instead, heuristics, or smple aids, strategies, and rules-of-thumb are adopted from
Stuational experiences involving predictions of uncertain events (Tversky and Kahneman, 1974).

The problem can be that there are few opportunities to systematically obtain or evauate feedback from the
outcomes of these predictions, and those that do arise may provide anecdotal reinforcement for heuristic rules
that are mathematically inconsistent. The divergence between heuristic and mathematical reasoning istermed
bias. Technical experts, even those with formal probability backgrounds, are no less susceptible than others
to various forms of bias, s0 it fals upon both the facilitator and the probability estimator to recognize and
reduce their effects. There are many types and sources of bias, and one, motivational bias, has been
explained in Section 111.B.4 of the text. Some of the more important sources of cognitive bias are
summarized in Table 1 and further explained below, along with ways to counteract them in risk analysis
settings.

3.1 Anchoring and Adjustment

Often an egtimator will begin with an initid "best estimate’ probability vaue, then adjust it upward or
downwardin light of specific information or context. The magnitude of this adjustment istypicaly insufficient
and biased toward the initia value. Known as anchoring bias, this can affect normalized-frequency
estimates starting from and anchored to some base-rate failure frequency. One way to reduce it can be to
start by considering extreme probability scenarios, working "backward" toward the base-rate frequency.
Another type of anchoring bias resultsfrom conjunctive distortionswhenthereare several occurrencesthat
contribute to an outcome. Here, the tendency is to anchor on the probability of only one of these events, with
insufficient adjustment to account for their joint probability. A solution isto consider each event individually,
then aggregate the component probabilities. This will be recognized as smply another verson of the
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decomposition approach, and it is useful even if performed externaly from the event tree.
3.2 Availability

The ease with which specific instances of an occurrence cometo mindistermed availability, and a related
factor isthe salience, or vividness, with which they are visualized. Probability estimates for events that are
available or especidly sdient tend to be higher than those lessreadily recalled, which istermed availability
bias. An investigator of the Teton failure, for example, could be subject to availability bias in estimating
probabilities for interna erosion of jointed rock foundations, or a laboratory researcher might be similarly
affected in estimating the probability of some behavior from new test procedures just devised.

It can be important to guard against availability bias introduced by review of failure case histories, especidly
thosethat are especialy well-documented and hence salient. Case history information isfundamental to many
aspects of risk analysis, and its importance cannot be overstated. However, when used in probability
estimation, it is useful to keep in mind that few dams, even those with adverse conditions, ever actualy fail.
The potentia for availability bias from review of failure case histories can be countered by aso including
various non-failure incidents that serve to highlight those circumstances or conditions which truncated the
failure process. A find source of availability bias can arise smply from disproportionate representation of a
particular phenomenon or process in the technical literature or in the research attention it receives. A
probability for embankment dam dope ingtability, for example, might be considerably migudged in this way.

3.3 Representativeness

The representativeness heuristicisaform of stereotyping by which people tend to emphasize some particular
amilarity or piece of information rather than integrating and synthesizing information from all sources. In
genera, representativeness bias comes about from the corresponding tendency to undervalue or discard
other evidence, especialy that based on experience or more genera information (Kahneman and Tversky,
1982ab; Bar-Hillel, 1982). For example, if one were asked to assign a probability to the presence of open
jointsin thefoundation of adam with no design, construction, or subsurface information, a50/50 chance might
be specified to reflect probabilistic indifference on the two possible outcomes. However, only somedamsare
founded on rock inthefirst place, some smaller subset are on jointed rock, and even fewer contain open joints
- dl forms of generd information that would support some lower probability value. Thisillustratesbase-rate
neglect, or the tendency to give insufficient consideration to underlying base-rate frequency information.

Representativeness bias can a so come about through emphasis on more rigorous or complex analysis results,
at the expense of smpler techniques or other information externa to the analysis altogether. For example, a
liquefaction flowdide probability assigned using a complex post-liquefaction deformation analysis might fail
to account for field performance experience in some similar situation. A corollary effect is the failure to
adequately account for predictability of the event according to the quantity and quality of information about
it, for instance basing the probability of liquefaction on a single low (N,)q, Value without considering the
variability inherent in the Standard Penetration Test or the limited statistical sample size.

Representativeness bias can be counteracted by conscious attemptsto include al pertinent information in the

probability assessment. Each supporting rationae, anaysis, or piece of information tells something but isaso
incomplete in itsalf, supporting the use of as broad a range of techniques and perspectives as possible. No
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prior source of information should be discarded as new or more “accurate” information becomes available,
but instead the reliability of each separate source should be considered. Once again, simple decomposition
incorporating multiple evidence or information sources can aid these efforts.

3.4 Overconfidence

If degree-of-belief probability is an expression of one's level of confidence, then overconfidence, or the
tendency to be more confident than the evidence warrants, may well be the most important bias affecting its
assessment. Overconfidence bias is manifested by a tendency to discount outliers, to assign probability
distributions on parameters that are too narrow about the mean, or to assign probabilities at the high or low
ends of the probability scalethat are more extreme than they should be. Overconfidence bias has been shown
to be pervasive among the general population and technical experts alike, and its effects can be hard to
defeat. The heuristic at work is for people to exaggerate the extent to which what they know is correct. In
effect, they are wrong too often when they are certain they're right.

Overconfidence bias is shown consistently in studies where subjects are asked to provide the answers to
general-knowledge questions aong with the probability that their answers are correct. Over many such
subjects and many questions, people are said to be well calibrated if their judgments about the probability
of being right or wrong correspond to the frequency that they actually are. For example, Figure 3 plots
experimental data from several groups of subjects studied by Fischhoff, et. a. (1977). The estimated error
probabilitiesare reasonably well-calibrated with respect to actual error frequenciesonly withinalimited range
for probabilities no smaller than about 0.1. Their overconfidence bias - expressed as the difference between
actual and judged error probabilities - increased dramatically for more extreme probability estimates with
estimated error probability of 1:1,000,000 corresponding to actud error frequency of about 1:10, a ratio of
some five orders of magnitude. Moreover, the subjects showed little cognitive discrimination among extreme
probability values, with estimated probabilities ranging al the way from 102 to 10° for essentially constant
error frequency.

The extent to which people are well-calibrated depends heavily on outcome feedback. Weather forecasters
become quite well calibrated over the limited probability ranges they use, apparently because the uncertain
events they assess (precipitation and temperature) are repetitive in nature and feedback occurs every day
(Murphy and Winkler, 1974). Physicians, on the other hand, are often poorly cdibrated, possibly because their
diagnoses consider amuch wider array of dissimilar possibilitiesand feedback opportunitiesare limited by lack
of followup and patient referrals (Poses, et. a., 1985). Here, the parallelsto dam safety questionsare evident.

The degree of difficulty about aproblem isrelated to the amount of information and general knowledge about
it. Surprisingly, overconfidence bias is both more pervasive and more severe for "hard" questions than for
"easy" ones, with some of the most extreme overconfidence observed for tasks about which the assessors
have no knowledge whatsoever (Lichtenstein, et. a., 1982). Accordingly, it might be expected that technical
experts or speciaists would find problems within their knowledge domain easier and therefore | ess affected
by overconfidence, but this appears not to be the case. For example, Figure 4 showsthe results of predictions
by seven internationally-recognized geotechnical engineers for the height at failure of atest embankment on
soft clay, along with error bars providing the 50% confidence ranges they specified for their predictions
(Hynes and Vanmarke, 1976). Had they been well-calibrated as a group, haf of their ranges should have
encompassed the actual failure height. None did. Such studies demonstrate that expert specidists are at least
as prone to overconfidence as their less-experienced colleagues of similar training and sometimes even more
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30, perhaps because the latter are more candid in recognizing the limitations of their knowledge. The best
probability assessors can therefore be those having both substantive expertise derived from skills, education,
and experience in their knowledge domain, and normative ability to express judgmentsin an unbiased way.
These studies make it clear that substantive expertise has little influence on normative abilities.

Correcting, compensating, or limiting the effects of overconfidencein degree-of-belief probability assessment
can be difficult, but not as hopeless asit might appear. A number of techniquesfor debiasing exist, and some
of those useful in the context of Reclamation's efforts are described below.

3.4.1Training

Training of probability estimators uses the kind of outcome feedback that benefits weather forecasters.
Training is an essential component of formal probability eicitation schemes (Keeney and von Winterfeldt,
1991), and it often includes presenting the assessor with alist of general-knowledge questions selected from
an amanac (How long is the Amazon River? What is the population of Madagascar?) and requesting 90%
confidence limits on each quantity. Using adozen or so questions, overconfidence biasis easily demonstrated
on a persona level when the actual frequency of correct answers is compared to the number inferred from
confidence limits. Revealing persona overconfidence biasin thisway may help the estimator compensate for
it in subsequent probability assessments by more clearly recognizing limitations in knowledge. However,
experimental attemptsto verify thiseffect have shown mixed results, with some studies showing improvement
and others (Alpert and Raiffa, 1982) showing estimators to be nearly impervious to repeated training and
feedback attempts. Still other studies, however, suggest that one of the most effective ways to reduce
overconfidence bias can be to educate estimators about the kinds of cognitive processes that can influence
probability estimates, an end which the discussions provided here can help serve.

3.4.2 Interrogation

Skilled interrogation can help reduce overconfidence bias by asking the estimator to consider, and even list,
the reasons why an assessed probability value might be wrong (Koriat, et. a., 1980). People can be
insufficiently critica or intent on justifying their initial response, and they tend to detect inconsistencies only
when specifically prompted to look for them. Probing questions by a skilled facilitator to prompt for
disconfirming evidence and counterarguments can be among the most effective ways to reduce
overconfidence, especialy for extreme probability values where its effects are likely to be most severe. One
technique asks the estimator to imagine that an outcome contrary to an extreme probability has actually
happened, and to provide in hypothetical hindsight some possible reasons why.

3.4.3 Restructuring

Overconfidence bias can be reduced if a"hard" question can be made easier, and one way to do so isto use
the familiar methods of decomposition for disaggregating a general question into more specific component
parts. The opportunity to do so comes as early as the event-tree construction stage, where bias can be
reduced by defining component events to a level of detail such that individua degree-of-belief event
probabilities are more likely to reside within the well-calibrated range. Even when complexity imposes
practical limits on the desired degree of decomposition within the event tree itsalf, decomposition can till be
undertaken during probability estimation if the resulting events are captured in "sub-tree" form and preserved
for documentation.

3.4.4 Constraints
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The effects of overconfidence bias can be limited in amore systematic way by constraining degree-of-belief
probabilities to values expected to lie within or not far beyond the well-cdibrated range. Accompanied by
good event decomposition, degree-of-belief probability constraints are sometimestaken asabout 0.01t0 0.99,
with exceptions for more extreme vaues in specia cases such as those having some underlying base-rate
frequency information to support them. While overconfidence bias is not eiminated, this better assures that
itseffectsare not dominant. Incorporating probability constraintsinto the structure of the probability estimation
processitself can also help achieve greater consistency in debiasing effects from onerisk analysisto another,
making results less dependent on the particular facilitator, estimator, or application.

3.5 Verbal and Numerical Correspondences

Both everyday experience and research suggest that most peopl e express and communi cate uncertainty more
readily using wordsthan numbers (Zimmer, 1983). Thisbecomes animportant consideration in Reclamation’s
risk analysis procedures that emphasize the synergies arising from group discussions as fundamental to
achieving an improved understanding of dam behavior and the uncertainties that affect it. To promote these
interactions in away adapted to how people express uncertainty, Reclamation has adopted the conventions
for mapping verbal descriptors of uncertainty into numerical degree-of-belief probability statements provided
in the text (Section IV. D. Step 3). These conventions serve to reduce ambiguity in the use of verbal
descriptors during group discussions and to enhance consistency in probability estimatesfrom onerisk analysis
to anothe.

Therole of verbal to numerical transformationsis best understood in the context of how people formulate and
quantify uncertainty judgments. Several representations of this cognitive process have been proposed that
separate it into multiple stages (Beach, 1992; Bolger and Wright, 1992; McCleland and Bolger, 1994; Curley
and Benson, 1994). In general, some plausible account or scenario of the operative mechanism or condition
in question isfirst developed. Thisis then tested against supporting and conflicting evidence, accounting for
both its perceived strength and validity, to form ajudgment about the uncertainty associated with the scenario
and one's strength of belief about it. The final stage expresses the uncertainty judgment as a numerical
probability value. In doing so, people sometimes adopt an intermediate step involving word-to-number
equivalences such as those shown on Table 2 (Reagan, et. a., 1989), and Reclamation’s transformation
conventions adopt this concept.

Reclamation’s risk analysis procedures place magjor emphasis on the first two of these stages involving
interactive scenario formulation and testing of uncertainty judgments, because this is where mutual
understanding of relevant uncertainties comes about. The conventions for trandating these judgments into
numerical probability statements are introduced primarily in the find stage, where they represent the
expression of these judgments but not the judgment-forming process itsalf. As a device for communicating,
both internally among team members and externally to decisionmakers, Reclamation’s conventions become
an integra part of itsrisk anadysis procedures. As such, they must be recognized and accounted for when
interpreting and using the risk analysis results.

3.6 Facilitator Role

Degree-of-belief probability approaches are central to Reclamation'srisk assessment methodology. Their use
requires an understanding of the cognitive processes that people adopt in estimating them, the forms of bias
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that can result, and waysto reduce or limit its effects. One of the key roles of the facilitator isto ensure that
the risk assessment team applies the following principles:

C Team members need to understand the importance of recognizing and dealing with various forms of
bias.
C The information, data, and analyses that contribute to an assessed degree-of-belief probability need

to be considered in abalanced and comprehensive way that accountsfor the reliability of each source
of evidence without discarding or overlooking generdized information or smplified evauations.

C Decomposition of events into their smallest realistic components can help reduce severa forms of
bias. Thisisalogica outgrowth of the event-tree approach.

C The potential for overconfidence biasis greatest for extreme degree-of-belief probability values that
fal outsde most people's well-calibrated range. Except where there is some underlying base-rate
frequency information to support them, such extreme values should be questioned and measures
adopted to reduce the effects of overconfidence bias they are likely to incorporate.

4.0 Skillsand Expertise for Response Probability Estimation

Risk analysis has been called the systematic application of engineering judgment. Dam safety assessment
requires judgment when deciding whether to perform additiona anaysis or field exploration, when deciding
whether a particular dam is safe, or when choosing the best modification alternative for a deficient dam.
Structural response assessments, load estimates, and consequence evaluations each have significant
associated uncertainties. To characterize them Reclamation typically uses expert opinion methods to obtain
judgment-based subjective probabilities as a supplement to relative-frequency derived values. Understanding
and enhancing expertise and judgment can help improve not only risk analysis but aso other Reclamation
activities.

4.1 Characteristics of Expertise

Mastery of subject matter or possession of a repertoire of facts within one's knowledge domain may be
necessary, but they are not sufficient for the kinds of expertise that subjective probability estimation requires.
Whereas novices operate according to rule-based procedures, experts not only have an enhanced state of
knowledge but they navigate a problem space in different ways (Ayton, 1992). The characteristics that
distinguish experts from novices are reveaded by studies of people routinely responsible for evaluation-based
decisions, especially those under great pressurelikefighter pilots, airline captains, and nurses (Shanteau, 1992;
Klein, 1998). Some of these characteristics are:
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C ability to recognize patterns in data, behavior, or case-history experience

C ability to detect anomalies or deviations from these patterns

C a sense of “dtuation awareness,” or the “big picture;” specificaly, an ability to track al important
information, draw inferences from it, and project it forward in time.

C use of mental simulation to interpret the anticipated operation of a process

C ability to make fine discriminations and detect subtle differences

C awareness of their own limitations

In many ways these characteristics capture the essence of judgment, or some might say simple common
sense, and it is easily recognized that all of them are related to processes used in formulating subjective
probability estimates. Table 3 shows some of these pardlels that illustrate how developing these
characteristics of expertise goes hand-in-hand with developing the cognitive skills needed for unbiased
probability estimation.

4.2 Group Processes

The skills and characteristics of expertise require continual feedback and practice, and it israre to find them
al in any one person. For this and other reasons, probability estimation carried out in agroup setting can have
advantages over individua estimates combined externally to the estimation process. This behavioral
aggregation involves a largely unstructured process in which group members communicate among
themselves to arrive at some consensus probability judgment. Theseinteractions can sometimes allow group
performanceto achievetheleve of itsbest member, but thisis often impeded by the following factors (Rowe,
1992):

C socia pressure that forces conformity to majority opinion

C overinfluence of more verbal or strident individuals

C changing motives to reach premature consensus

C the need for competitive individuals to “win” and not lose face

C reinforcement of mutual biases, especialy if group members share the same training and background

These factors can cloud the ability of groups to select the most appropriate opinion-combining Strategy or to
arrive at the most appropriate weighting for their members. The role of group member selection and that of
the facilitator are evident in controlling these effects.

4.3 Skillsand Abilitiesin Reclamation Risk Analyses
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The ided probability estimator in a Reclamation risk analysis is one whose opinion blends an intimate
knowledge of the dam and its historical performance; asolid background in the engineering principlesrelative
to thefailure mode component under consideration; and athorough understanding of basic tenetsof probability
theory and decision analysis. Moreover, a person whose experience includes evaluating dam failure case
histories might often be preferable to onewith exclusively design experience. The desirable quality isan ability
to adopt a broad but skeptical viewpoint. A good designer accustomed to eliminating uncertainty may beless
comfortable dealing with it, a perspective that can lead to overconfidence and/or motivationa bias.

An intimate knowledge of the dam and its performance history is important to ensurethat al possiblefailure
modes have been identified; that the explorations, test programs, and analyses are consistent with
performance history and construction information; and that estimated probabilities redistically address the
dam’s overd| condition and behavior. Selection of team members need not hinge on this qualification, but a
member chosen for technical competence rather than knowledge of the dam must be allocated the time
necessary for review of the SEED Data Books and other related information.

A thorough understanding of relevant engineering principles is important because good judgment is formed
by processing both theoretical and empirical information. Necessary technical background includes field
explorations, |aboratory testing, and analytical methods. Each laboratory test, each sampling method, and each
analytical model has various associated parameter and model uncertainties. Understanding the pitfalls in
sampling, the strengths and weaknesses of the testing, and the limitations of the analytical procedures can only
come with experience obtained when knowledge of theory is combined with an understanding of how well
the theory conforms to actual behavior of real structures.

Knowledge of the basic tenets of probability theory and decision analysisis important for determining when
an answer that seems intuitively obvious may be incorrect. It is important to develop a sense for the
significance of probabilities of combined events, and to know how updated information can be combined with
prior probability estimates. Recognizing when asequence of eventshasbeen sufficiently decomposed requires
experience in developing event trees that are neither so detailed that event relationships are obscured nor so
smplified that event probabilities cannot be conceptualized. An expert facilitator can, to some degree,
compensate for limited knowledge in this area, but the quality of the risk analysis can be materialy improved
if al team members are well versed in probability and decision theory.

Identifying and developing failure modes may be best accomplished by an interdisciplinary group, but once
the event tree has been established the probabilities assigned to each event need to reflect the best available
judgement of ateam of estimators within the applicable discipline. The best risk analysis team member
candidates at Reclamation might be the team leader or Principal Engineer, the most recent Performance
Parameter TM author, the senior engineer for the dam, or the technical staff most familiar with the analyses
conducted to date on the dam. These persons would have both the intimate knowledge of the dam’ s historical
performance and the technical knowledge required. The next best choice would be those with outstanding
technical expertise in the desired field, but having less detailed familiarity with the dam. In either case, team
members need to be alowed to decline to estimate if they feel they are not sufficiently qualified to render a
knowledgeable or unbiased assessment.

These attributes of Reclamation team members may result in a collection of people prone to motivational
and/or cognitive bias. Training of team members and interrogation techniques on the part of the facilitator can
reduce the effects of bias, but not eliminate them. Therefore, it isimportant that DSO decisionmakers have
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an understanding of these effects so that response probability estimates and risk analysisresults derived from
them can be used sensibly and responsibly within the context of how they are obtained.
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TABLE 1. Summary of Heuristics and Biases

Heuristic or bias

Description

1) Overconfidence bias

tendency to be more confident than warranted in estimating
probabilities that are too extreme or distributions too narrow
about the mean

2) Representativeness heuristic
a) Base-rate neglect

b) Insengitivity to sample
Sze

overemphasis on a particular correlation, similarity, or type of
information, with insufficient consideration of other information

overemphasis on specific amilarities with insufficient
consideration of base-rate frequencies

overestimating the significance of limited data

3) Availability heuristic

overemphasis on specific instances more eadily or vividly
recalled

4) Anchoring and adjustment
heuristic

a) insufficient adjustment

b) conjunctive distortion

development of an initid probability value which is then modified
to yield the find result

insufficient modification of the initial probability

overestimation of joint probability compared to aggregated
component probabilities




TABLE 2. Numerical responses and ranges for 18 probability expressions

(after Reagan, et. al., 1989)

Expression Single-number probability Specified range, %
equivalent, % (median upper and lower
(median of responses) bounds)
Almog impossible 2 Oto5
Very improbable 5 1to15
Very unlikely 10 2t015
Very low chance 10 5t015
Improbable 15 5t020
Unlikely 15 10to 25
Low chance 20 10to 20
Possble 40 40to 70
Medium chance 50 4010 60
Even chance 50 451055
Probable 70 60to 75
Likey 70 6510 85
Very possble 80 70t0 87.5
Very probable 80 751092
High chance 80 80to0 92
Very likdy 85 751090
Very high chance 0 851099
Almost certain 0 90t0 99.5




TABLE 3. Expertise and subjective probability estimation

Characteristic of experts

Corresponding subjective
probability skill

Heuristic affected/

bias reduced

Pettern recognition

emphasizes content of broader
information from data and case
histories

representativeness

Anomaly detection

gppropriate attention to outliers

overconfidence

Situation awareness

use of dl applicable information

representativeness

Menta smulation

decomposition of processes and
failure sequences

overconfidence,
conjunctive distortion

Discrimination ability

recognition of mideading
generdizations

representativeness,
anchoring and adjustment

Awareness of limitations

realistic appraisal of what is not
known

overconfidence
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